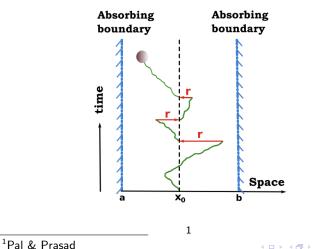
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting

Snehesh Das ¹ Shreyas Waghe ² Seraphina Bracy ³


UCLA ¹ UMass Amherst ² UM Western ³

July 17, 2024

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		1 / 19	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Overview of Problem

 Snehesh Das , Shreyas Waghe , Seraphina Bracy
 UCLA
 UMass Amherst
 UM Western

 Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting
 2/19

Introduction

A RTP particle's position x(t) evolves per the Langevin equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathbf{v} \cdot \sigma(t)$$

where

- v is a constant speed
- $\bullet \ \sigma \in \{\pm 1\}$
- $P(\sigma(0) = \pm 1) = 1/2$
- $\sigma \leftarrow -\sigma$ as a Poisson process with rate γ

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		3 / 19	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Introduction

A RTP particle's position x(t) evolves per the Langevin equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathbf{v} \cdot \sigma(t)$$

where we impose a stochastic resetting:

- The particle spawns from the point $x_0 \in [0, L]$
- The particle resets position to *X_r* ∈ [0, *L*] as a Poisson process with rate *r*

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		3 / 19	

イロト 不得 トイヨト イヨト

An Expression for Cover Times

Definition (First Passage Time)

The First Passage Time is the **time it takes** for the particle of dynamics x(t) to reach a boundary ω

$$FPT := \inf\{t > 0 : x(t) \to \omega\}$$

Definition (Cover Time)

The Cover Time of set Ω is the **time it takes** for the particle with dynamics x(t) to cover every point in Ω .

$$CT := \inf\{t \ge 0 : \Omega \subseteq \cup_{s=0}^{t} x(t)\}$$

 Snehesh Das , Shreyas Waghe , Seraphina Bracy
 UCLA
 UMass Amherst
 UM Western

 Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting
 4/19
 4/19

An Expression for Cover Times

The Mean Cover Time can be broken down into three terms as

$$MCT = \mathbb{E}T_{exit} + \pi_0 \mathbb{E}T_{0 \to L} + \pi_L \mathbb{E}T_{L \to 0}$$

where

- $\pi_{0/L} = \mathbb{P}(0/L \text{ is reached first})$
- *T_{exit}* is the time taken for the particle to leave the interval.
- *T_{a→b}* is the time taken for a particle spawning at *a* to reach *b*.

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		5 / 19	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

An Expression for Cover Times

In this work, we assume that the spawn point x_0 and the reset point x_r are both L/2. The following simplifications follow:

$$\pi_0 = \pi_L = rac{1}{2}$$
 $T_{0
ightarrow L} = T_{L
ightarrow 0} =: T_{halfline}$

and thus,

$$MCT = \mathbb{E}T_{exit} + \mathbb{E}T_{halfline}$$

Definition (Survival Probability)

The survival probability of the particle with resetting, $Q_r(x_0, t)$, is the **probability that the particle has not yet left the interval** at time t, given it spawned at x_0 , with resetting rate r.

² Pal & Prasad	<□> < □> < □> < □> < □> < □> < □> < □
Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA UMass Amherst UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting	7 / 19

Definition (Survival Probability)

The survival probability of the particle with resetting, $Q_r(x_0, t)$, is the **probability that the particle has not yet left the interval** at time t, given it spawned at x_0 , with resetting rate r.

A Renewal Equation for $Q_r(x_0, t)$ is ²

$$Q_r(x_0, t) = \underbrace{e^{-rt}Q_0(x_0, t)}_{\text{contribution from no reset}} + \underbrace{\int_0^t re^{-rt}Q_0(x_0, \tau)Q_r(x_0, t - \tau)}_{\text{contribution of reset at time } (t - \tau)} d\tau$$

² Pal & Prasad	${} \bullet \square \bullet$	< ⊡ > < ≣ > < 3	ŧ.	€	୬ବଙ
Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM	Weste	rn
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		7 / 19			

Consider the Laplace transform

$$\mathcal{L}\{Q_r(x_0,t)\}=\int_0^\infty e^{-st}Q_r(x_0,t)\,dt$$

$$egin{aligned} & ilde{Q}_r(x_0,s) = ilde{Q}_0(x_0,r+s) + r ilde{Q}_0(x_0,r+s) ilde{Q}_r(x_0,s) \ & ilde{Q}_r(x_0,s) = egin{aligned} & ilde{Q}_0(x_0,r+s) \ & ilde{Q}_0(x_0,r+s) \ & ilde{Q}_0(x_0,r+s) \end{aligned}$$

In Laplace space, the survival probability with resetting is neatly related to the survival probability without resetting!

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		8 / 19	

イロン イヨン イヨン イヨン 三日

We can find the $\mathbb{E} T_{halfline}$ as

$$\mathbb{E} T_{halfline} := \int_0^\infty t \cdot P_{\mathcal{T}_{halfline}}(t) = \int_0^\infty t \cdot -\frac{\mathrm{d}Q_r(x_0, t)}{\mathrm{d}t} dt$$
$$\stackrel{\mathrm{IBP}}{=} \int_0^\infty Q_r(x_0, t) dt = \int_0^\infty e^{-0 \cdot t} Q_r(x_0, t) dt$$
$$=: \tilde{Q}_r(x_0, s = 0)$$
$$= \boxed{\frac{\tilde{Q}_0(x_0, r)}{1 - r\tilde{Q}_0(x_0, r)}}$$

3

³ Evans and Majumdar, 2018	< • • •	• @ •	 < ≣ > 	≡×	≣ 4) ९ (२
Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMa	ass Amherst	UM	Westerr	h
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting			9/19			

Expression for $T_{halfline}$

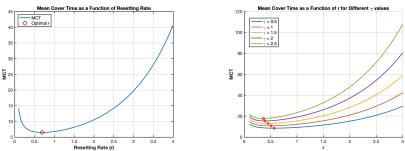
$$\mathbb{E}T_{halfine} = \frac{\tilde{Q}_0(x_0, r)}{1 - r\tilde{Q}_0(x_0, r)}$$
$$\tilde{Q}_0(x_0, s) = \frac{1}{s} + \frac{1}{2\gamma s}(v\lambda) - (s + 2\gamma)e^{-\lambda x_0}; \quad \lambda = \sqrt{\frac{s(s + \gamma)}{v^2}}$$

⁴ Evans and Majumdar, 2018	・ロ・・雪・・雪・・雪・ 雪 のへの
Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA UMass Amherst UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting	10 / 19

Expression for T_{exit}

$$\mathbb{E}T_{exit} = \frac{-2\gamma - r}{r(2\gamma + r)} + \frac{(2\gamma + r)\cosh\left(\frac{L}{2\nu}\sqrt{r(2\gamma + r)}\right)}{r(2\gamma + r)} + \frac{\nu\sqrt{r(2\gamma + r)}\sinh\left(\frac{L}{2\nu}\sqrt{r(2\gamma + r)}\right)}{r(2\gamma + r)}$$

	・ロト・西ト・ヨト・ヨー うへの
Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA UMass Amherst UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting	11 / 19

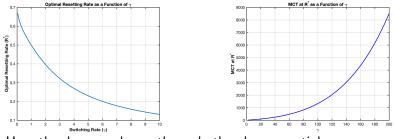

Putting it together

$$MCT = \frac{\frac{1}{r} + \frac{1}{2\gamma r} \left(v \sqrt{\frac{r(r+\gamma)}{v^2}} \right) - (r+2\gamma) e^{-\sqrt{\frac{r(r+\gamma)}{v^2}} x_0}}{1 - r \left(\frac{1}{r} + \frac{1}{2\gamma r} \left(v \sqrt{\frac{r(r+\gamma)}{v^2}} \right) - (r+2\gamma) e^{-\sqrt{\frac{r(r+\gamma)}{v^2}} x_0} \right)} + \frac{-2\gamma - r}{r(2\gamma + r)} + \frac{(2\gamma + r)\cosh\left(\frac{L}{2v}\sqrt{r(2\gamma + r)}\right)}{r(2\gamma + r)} + \frac{v\sqrt{r(2\gamma + r)}\sinh\left(\frac{L}{2v}\sqrt{r(2\gamma + r)}\right)}{r(2\gamma + r)}$$

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		12 / 19	

▲□ > ▲圖 > ▲ 臣 > ▲臣 > □ 臣 = の Q @

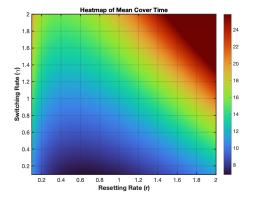
Results: Dependence of MCT on resetting rate


Fixing v = 1, L = 2 we plot MCT vs r

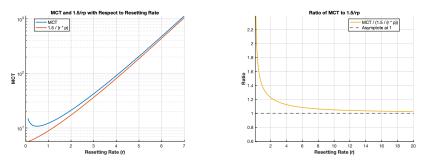
The MCT has a unique minima for every fixed switching rate γ
The minimizer r* shifts closer to zero as γ ↑

2 mil 1

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA UMass Amherst UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting	13 / 19


Results: Dependence of optimal resetting rate, MCT on switching rate

Here the decay and growth are both subexponential.


			1 = 1 1	er e.	*)4(*
Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMas	s Amherst	UM Weste	rn
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		1	4/19		

Results: Dependence of MCT on switching and resetting rate

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		15 / 19	

Results: Large r (freq) behavior of MCT

- MCT ~ ^{3/2}/_{rp} as r → ∞ in agreement with the analysis of Linn & Lawley (2024) for Brownian Motion on a symmetric interval.
- p is the measure of the success probability (of reaching a boundary before resetting).

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		16 / 19	

Future Research

- Velocity is not restricted to one value
- Different distributions of resetting and switching
- Extending this to higher dimensions, where the particle is equipped with a detection radius.

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		17 / 19	

イロト 不得 とくきとくきとうき

References

- Bressloff, P.C. (2023) Encounter-based model of a run-and-tumble particle II: absorption at sticky boundaries. J. Stat. Mech., 2023, 043208.
- Evans, M.R., Majumdar, S.N., Schehr, G. (2020) Stochastic resetting and applications. J. Phys. A: Math. Theor., 53, 193001.
- Evans, M.R. Majumdar, S.N. (2018) Run and tumble particle under resetting: a renewal approach. J. Phys. A: Math. Theor., 51, 475003.
- Pal, A. Prasad, V.V. (2019) First passage under stochastic resetting in an interval. Phys. Rev. E, 99, 032123.
- Linn, S. Lawley, S.D. (2024) Cover times with stochastic resetting.

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		18 / 19	

Special Thanks to Sean Lawley and Samantha Linn

for organizing and assisting this program!

Snehesh Das , Shreyas Waghe , Seraphina Bracy	UCLA	UMass Amherst	UM Western	
Cover Times for a Run-and-Tumble Particle in 1D with Stochastic Resetting		19 / 19		

イロマ スポス インマン スピン した